Catheter ablation for atrial fibrillation

Catheter ablation for atrial fibrillation

How the heart's electrical system works

Electrical system of the heart.
slide 1 of 5
    
slide 1 of 5, How the heart's electrical system works,

In a normal heart, the sinoatrial (SA) node triggers the electrical impulse, causing the upper chambers (atria) to contract. The signal travels through the atrioventricular (AV) node to the atrioventricular bundle, which divides into the Purkinje fibres that carry the signal and cause the lower chambers (ventricles) to contract. The electrocardiogram (EKG, ECG) tracing shows this normal electrical activity.

How atrial fibrillation happens

Right and left atria of heart with details showing fibrillation in an atrium, and EKG patterns of fibrillation and normal rhythm.
slide 2 of 5
    
slide 2 of 5, How atrial fibrillation happens,

In atrial fibrillation, erratic electrical impulses can cause the upper chambers of the heart (atria) to fibrillate, or quiver, resulting in an irregular and frequently rapid heart rate. The irregular, sawtooth pattern in the electrocardiogram (EKG, ECG) tracing shows these erratic impulses.

Catheter is threaded through a vein to the heart

How a catheter is inserted through a vein to the heart.
slide 3 of 5
    
slide 3 of 5, Catheter is threaded through a vein to the heart,

For this non-surgical procedure called catheter ablation, thin tubes called catheters are inserted into a vein, typically in the groin or neck, and threaded through the vein into the heart. A small puncture in the tissue that divides the right and left chambers (septum) allows the catheter to pass into the left atrium.

Heart tissue is destroyed

Heart tissue is destroyed (ablation).
slide 4 of 5
    
slide 4 of 5, Heart tissue is destroyed,

An electrode at the tip of a catheter sends out energy, such as radio waves, that destroys (ablates) the tissue that is causing atrial fibrillation. In this image, the energy is destroying tissue at the base of the pulmonary vein. (The pulmonary veins bring blood back from the lungs to the heart.)

Scar tissue prevents or eliminates impulses

How scar tissue from ablation stops electrical impulses.
slide 5 of 5
    
slide 5 of 5, Scar tissue prevents or eliminates impulses,

Catheter ablation creates scar tissue that prevents impulses from leaving the pulmonary veins or eliminates the impulses altogether.

Current as of: September 7, 2022

Author: Healthwise Staff
Medical Review:
Rakesh K. Pai MD, FACC - Cardiology, Electrophysiology
Martin J. Gabica MD - Family Medicine
Adam Husney MD - Family Medicine
John M. Miller MD, FACC - Cardiology, Electrophysiology
Heather Quinn MD - Family Medicine
E. Gregory Thompson MD - Internal Medicine
Stephen Fort MD, MRCP, FRCPC - Interventional Cardiology